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Introduction 
 
The following study is an attempt to better understand the problem of scaling water flows caused by 

shallow explosive charges in field experiments and, in particular, the motions of objects in the water that are 
swept along by the flows.  The motivation is to be able to use relatively inexpensive small-scale tests to obtain the 
same information produced by expensive full-scale tests.   

 
The Navy is currently interested in using general-purpose bombs to clear obstacles that have been 

submerged in shallow water by adversaries to impede landing craft.  Obstacles of particular interest are steel 
constructions know as tetrahedrons and hedgehogs (illustrated in Figure 1).  Current research has determined that 
such obstacles are moved by an explosion primarily as a result of drag forces created by the water flow, although 
the shock wave also plays a minor role for close-in obstacles.  U.S. efforts to study the motions of obstacles using 
small-scale explosive tests have been underway since 1999. 
 
 
 
 
 
 
 
 

Figure 1.  Tetrahedron and Hedgehog Obstacles 
 

Quite obviously, the Navy’s interest in scaling the flow of water has a long history.  Rigorous research on 
scaling the water flows of underwater explosions began during World War II and continued for the next several 
decades.  Snay1 produced a very readable and comprehensive account of this work that addressed many topics and 
specifically addressed the scaling of underwater explosion shock wave and bubble phenomena.  He showed that, 
while the shock wave can be scaled in small-scale field tests, the scaling of bubble-induced flow phenomena has 
always required special equipment, such as centrifuges and vacuum tanks, and has never been accurately 
accomplished in the field.  In this report we examine the problem of scaling bubble effects in the field and suggest 
a way by which this can be achieved for the obstacle clearance problem.  Our approach is to seek out the 
conditions under which the basic equations governing the flow phenomena are invariant under changes of scale.   
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Scaling of Conservation Equations for Incompressible Inviscid Flows 
 
We examine the requirements for scaling by first considering the conservation equations for 

incompressible inviscid flows.  Szymczak2 has shown that explosion bubble phenomena near the free surface can 
be accurately modeled by satisfying, over the fluid and gas domains, the mass and momentum conservation 
equations  

 
 ·( ) 0tρ ρ+∇ =u         (1) 
 
 ( ) ·( )t g pρ ρ ρ+∇ = − −∇u uu k , (2) 
           
subject to various constraints and justifiable assumptions regarding the bubble gas, cavitated regions, and the 
ambient atmosphere.  Other important contributors are acknowledged in Reference 3.  In the water, the flow is 
treated as incompressible and the equations simplify to  
 
 · 0∇ =u  (3) 
 
 ·( )t g pρ ρ ρ+ ∇ = − −∇u uu k  , (4) 
 
with pressure and velocity initial conditions, and boundary conditions applied at the water surface and 
bottom, at the gas-water surface that forms the explosion bubble, and at the boundaries of cavitation 
regions, when they exist.  In axisymmetric cylindrical coordinates, Equations (3) and (4) are   
  

 1 0ru w
r r z
∂ ∂

+ =
∂ ∂

   (Continuity) (5) 

 

 u u u pu w
t r z r

ρ ∂ ∂ ∂ ∂ + + = − ∂ ∂ ∂ ∂ 
    (Horizontal Momentum) (6) 

 

  w w w pu w g
t r z z

ρ ρ∂ ∂ ∂ ∂ + + = − ∂ ∂ ∂ ∂ 
    (Vertical Momentum), (7) 

 
 
where u and w are the velocity components in the radial and vertical directions. 
 

By introducing horizontal and vertical characteristic lengths rL and zL , respectively, and a characteristic 
time T , we can put the left sides of Equations (5), (6), and (7) into dimensionless forms.  Upon substitution of the 

quantities rLu u
T

∗= , zLw w
T

∗= , rr L r∗= , zz L z∗= , and t Tt∗= , where starred terms are dimensionless, we 

obtain  
 

 
( ) ( )

1 0

r z
r

r r z

L LL r u w
T T

L r L r L z

∗ ∗ ∗

∗ ∗ ∗

   ∂ ∂   
   + =
∂ ∂

 (8) 
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( ) ( ) ( ) ( )

r r r
r z

r z r

L L Lu u u
L L pT T Tu w
T TTt L r L z L r

ρ

∗ ∗ ∗

∗ ∗
∗ ∗ ∗ ∗

      ∂ ∂ ∂       ∂      + + = −
 ∂ ∂ ∂ ∂
  

 (9) 

 

 
( ) ( ) ( ) ( )

z z z
r z

r z z

L L Lw w w
L L pT T Tu w g
T TTt L r L z L z

ρ ρ

∗ ∗ ∗

∗ ∗
∗ ∗ ∗ ∗

      ∂ ∂ ∂       ∂      + + = −
 ∂ ∂ ∂ ∂
  

. (10) 

 
Rearrangement and some cancellations yield the dimensionless equations 
  

 1 0r u w
r r z

∗ ∗ ∗

∗ ∗ ∗
∂ ∂

+ =
∂ ∂

 (11) 

 

 
2 1

r

u u u T pu w
L rt r z ρ

∗ ∗ ∗
∗ ∗

∗ ∗ ∗
∂ ∂ ∂ ∂

+ + = −
∂∂ ∂ ∂

 (12) 

 

 
2 2

0
1

z z

w w w T T pu w g g
L L zt r z ρ

∗ ∗ ∗
∗ ∗

∗ ∗ ∗
∂ ∂ ∂ ∂′+ + = −

∂∂ ∂ ∂
.  (13) 

 
It is noted that these results require a single characteristic time rather than different characteristic times for each 
direction.  In Equation (13), we have replaced g by 0g g′ , where we have chosen the acceleration of gravity at sea 
level, g0, as our characteristic gravity, and g′ is a dimensionless gravity.  For reasons that will later become clear, 

we write this as g′ rather than g∗ .  We can also call g′ the gravity scale factor. 
 
 The partial derivatives on the right hand sides of Equations (12) and (13) can be made dimensionless by 

transforming to r∗ and z∗ , and introducing the characteristic pressure 2
r zP L L Tρ= , so that p Pp∗= .  In this 

manner we can express the conservation equations as   
 

 1 0r u w
r r z

∗ ∗ ∗

∗ ∗ ∗
∂ ∂

+ =
∂ ∂

 (14) 

 

 1
r

u u u pu w N
t r z r

∗ ∗ ∗ ∗
∗ ∗ −

∗ ∗ ∗ ∗
∂ ∂ ∂ ∂

+ + = −
∂ ∂ ∂ ∂

 (15) 

 

 1 1 ,z
w w w pu w F N
t r z z

∗ ∗ ∗ ∗
∗ ∗ − −

∗ ∗ ∗ ∗
∂ ∂ ∂ ∂

+ + = −
∂ ∂ ∂ ∂

 (16) 
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where the quantities rN , zN , and F are given by  
 

 
2 2

2 2 2
0

, , andr z z
r z

L L LN N F
T P T P g g T
ρ ρ

= = =
′

 . (17) 

 
rN , zN , and F are respectively known as the Newton numbers in the r and z directions and the Froude 

number.  The Newton numbers are associated with dynamic inertial effects and the Froude number is 
associated with gravitational effects. 
 
 The model and full-scale tests will be governed by the same dimensionless equations if the Newton and 
Froude numbers appropriate for the model-scale, which we shall denote by primes, equal those appropriate for the 
full scale.   That is, if r rN N′ = , z zN N′ = , and F F′ = , it may be said that the model and full-scale equations 
then possess dynamic similarity, in the respective directions, and also gravitational similarity.  The scaling 
conditions are thus  
  

 
222 2

2 2
1 1 or r

rr r

T P T P T P L
T P LL L

ρ
ρ ρ ρ

 ′ ′ ′ ′ ′ ′ = =   ′  ′  
 (18) 

 

 
222 2

2 2
1 1 or z

zz z

T P T P T P L
T P LL L

ρ
ρ ρ ρ

 ′ ′ ′ ′ ′ ′ = =   ′  ′  
 (19) 

 

 
22 2

or z

z z z

T T T Lg g
L L T L
′ ′ ′ ′ ′= = ′  

  . (20) 

 
The time, pressure, length, and density scale factors appear on the right hand sides of Equations (18), (19)

, and (20).  Defining the symbols / ,T Tτ ′≡  
P
P

ϕ
′

= , r
r

r

L
L

λ
′

= , z
z

z

L
L

λ
′

= , and 
ρπ
ρ
′

= , to identify these scale 

factors, respectively, we can rewrite the scaling conditions as 

 2 2
rτ ϕ πλ=  (21) 

 2 2
zτ ϕ πλ=  (22) 

 2
zgτ λ′ =  (23) 

Equations (21) and (23) call for geometric similarity, i.e., r zλ λ λ= = , which, in turn, requires equality of the 
Newton numbers rN = zN = N .   
 

The remaining scaling conditions are  
 

 2 2τ ϕ πλ=  (24) 

    2gτ λ′ = . (25) 
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Satisfying Equations (24) and (25) in different ways leads to different types of equivalent experimental designs, 
all of which yield the same flow information.  All of these may be referred to as Froude and Newton scaling. The 
possibilities of interest are listed in Table I.  These include high gravity and low pressure scaling, which have 
been successfully used in the past to scale explosion bubble phenomena, and also high density and the mixed type 
scaling where the density and pressure of the model both differ from those of the full-scale test.  High gravity 
scaling requires the use of a centrifuge, while low pressure scaling (sometimes referred to as vacuum tank scaling) 
requires an enclosed tank from which the atmosphere can be partially evacuated.  All scale factor values in Table 
I, other than unity and the pressure scale factorϕ  in the case of the mixed design (E5), are expressed as functions 
of the length scale factor, which at this point is arbitrary.  Under E5,ϕ  is also arbitrary.   
 
 

Table 1.  Various Possibilities for Exact Scaling of Incompressible Inviscid Flows  
 

Experimental 
Design 

Length 
λ  

Time 
τ  

Pressure 
ϕ  

Density 
π  

Gravity 
g′  

Scaling 
Description 

E1 1 1 1 1 1 Full-Scale 
E2 λ  λ  1 1 1/λ  High Gravity 
E3 λ  λ  λ  1 1 Low Pressure 

E4 λ  λ  1 1/λ  1 High Density 

E5 λ  λ  ϕ  ϕ λ  1 Mixed Type 

Initial and Boundary Conditions 

 Equality of the model and full-scale dimensionless conservation equations is not alone sufficient for 
achieving flow similarity.  In addition, the dimensionless initial and boundary conditions for the model and full-
scale flows must also be identical.  The initial condition requires similarity of the velocity field v(r,z,t) at similar 
initial times, t0 and 0t′ .  We, thus, require  
 

 0 0
0( , , ) ( , , ) ( , , )t tT r z T r zr z t

L L L T L L L T
∗∗ ∗ ∗ ′′ ′ ′

′= =
′ ′ ′ ′

v v v , (26) 

 
or equivalently, 

 0 0 0 0( , , ) ( , , ) , , ,r z t r z t r r z z t tτ λ λ τ
λ

′ ′ ′ ′ ′ ′ ′= = = =v v , (27) 

 
for all points in the fluid domain. 
 
 The boundaries of the model must, of course, be geometrically similar to the boundaries of the full-scale 
test.  The numerical conditions that must be satisfied at the boundaries are described by Szymczak in Reference 2 
(p.5).  The pressures must satisfy Neumann conditions on “wall” boundaries and Dirichlet conditions on nonliquid 
surfaces, such as those of gas bubbles and the air-water interface.  Szymczak states that the Neumann condition, 
or value of /p∂ ∂n  on the “wall” boundary, implies that the normal component of the flow velocity is zero, 
i.e.,v⋅n , where n is the unit normal to the boundary at the point (r, z).  The dimensionless condition v*⋅n then 
follows immediately.  Reference 2 also describes a viscoplastic model suitable for saturated sand boundaries that 
we will not address as this review is motivational rather than comprehensive. 
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The Dirichlet conditions require continuity of the pressure on the free surfaces.  At the air-water interface 

the dimensionless pressure in the water p∗must equal the dimensionless atmospheric pressure Ap∗ .  It then 
follows that  
 

 A Ap p p pp
P P P P

∗′ ′
= = = =

′ ′
  

 

or    A A A
Pp p p
P

ϕ
′

′ = =  . (28) 

 
That is, the model atmospheric pressure must equal the full-scale atmospheric pressure multiplied by the pressure 
scale factor at all times t.  In a closely related fashion, the adiabatically changing explosion bubble pressure in the 
model and full-scale tests, ( ) and ( )B Bp t p t′ ′  respectively, must satisfy 
 
 ( ) ( )B Bp t p tϕ′ ′ =  (29) 
 
at all similar times t and t tτ′ = , including the initial times t0 and 0t′ .  It also follows that scaling restricts model 
cavitation bubble pressures.  If Cp  is the cavitation (vapor) pressure in the full-scale test (assumed constant), the 
model cavitation pressure must be  
 
 C Cp pϕ′ = . (30) 
 

Because Bp  is related to the detonation pressure of the explosive and Cp  is the vapor pressure of the 
fluid medium, it is very difficult to satisfy Equations (29) and (30) when designs with a reduced value of ϕ  are 
used, such as E3 and E5.  As pointed out by Snay (Reference 1, p.50), because of these difficulties “any model 
test represents an approximation” and “the problem of scaling requires a thorough understanding of the physics of 
the phenomena” to judge which effects should be strictly reproduced in the model experiment and which can be 
ignored.  The literature on vacuum tank scaling contains details of the techniques used to control many of these 
effects.4 

Application to Explosion Bubbles  

When the conservation equations are applied to underwater explosion bubbles, the characteristic length 
attributed by Cole to G.I. Taylor, that relates L to “the total energy available after emission of the shock wave” 
(Cole5, p 291), is often used: 

 

 
1 4

0

EL
g gρ

 
=  ′ 

. (31) 

   
Today, E is called the bubble energy.  If we use Equation (31) to define an energy scale factorε , we get  

 
4

4E L g g
E L

ρε π λ
ρ

′ ′ ′  ′ ′= = = 
 

. (32) 
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This shows thatε  is proportional to 4λ for testing design E3 ( 1g′ = , 1π = ), and to 3λ for methods E2 
( 1/g λ′ = , 1π = ), E4 ( 1g′ = , 1/π λ= ), and E5 ( 1g′ = ,π ϕ λ= ).  
 

In their review of spherical bubble theory, Szymczak and Solomon3 (referencing Friedman6 ) stated that 
the bubble energy E is usually assumed to be proportional to the explosive charge weight W (mass).  The constant 
of proportionality Q was shown to be  

 

 34
3

Q Jπ
∞= , (33) 

 
  where J∞  is related to the usual bubble radius coefficient  J  by the equation  
 

 
1 33(1 )

3
1
1

J J
γ

γ
α
α

−−

∞ −

 −
=  

−  
. (34) 

 
Here max minA Aα = is the ratio of the maximum and minimum bubble radii, and γ is the ratio of specific heats 
of the bubble gas, which is assumed to behave adiabatically.  Szymczak and Solomon pointed out that J is not a 
constant becauseα is a function of the charge depth (or hydrostatic pressure), but that J∞  may be regarded as a 
constant characteristic of the explosive.  While this has been known (e.g., see References 1 and 7), explosives 
handbooks and test reports have usually tabulated J values instead of J∞  values.  Thus, the energy scale factor 
can be expressed as  

 
3

E J W
E J W

ε ∞

∞

 ′ ′ ′
= =  

 
  , (35) 

 
and we may substitute J J′ for J J∞ ∞′  when both the full-scale and model charges are subjected to the same 
hydrostatic pressures.  Otherwise, an appropriate correction should be made based, for example, on the theory of 
Szymczak and Solomon. 
 
 By combining Equation (35) with Equation (32), the various scale factors of Table I can be expressed in 
terms of the charge weights.  These are shown in Table II. The scale factors of Table II apply to all flow quantities 
of the model test and all of its boundary and initial conditions.  In the case of E3, it should be noted that, because 
the length scale factor is proportional to the fourth root of the charge weight ratio, it cannot be used to size the 
model charge.  λ only pertains to the model charge when the cube root applies and when the same explosive is 
used in both the model and full-scale tests.  
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Table 2.  Scale Factors Expressed in terms of Charge Weights  

 
 Length 

λ  
Time 
τ  

Pressure 
ϕ  

Density 
π  

Gravity 
g′  

E1 1 1 1 1 1 

E2 

1 33
J W

WJ

 ′ ′∞  
∞ 

 
 
  

 

1 33
J W

WJ

 ′ ′∞  
∞ 

 
 
  

1 1 

1 33
J W

WJ

−
 ′ ′∞  

∞ 

 
 
  

E3 

1 43
J W

WJ

 ′ ′∞  
∞ 

 
 
  

1 83
J W

WJ

 ′ ′∞  
∞ 

 
 
  

1 43
J W

WJ

 ′ ′∞  
∞ 

 
 
  

1 1 

E4 

1 33J W
J W

 ′  ′∞    ∞   

 

1 63J W
J W

 ′  ′∞    ∞   

 1 

1 33J W
J W

−
 ′  ′∞    ∞   

 1 

E5 

1 33J W
J W

 ′  ′∞    ∞   

 

1 63J W
J W

 ′  ′∞    ∞   

 ϕ  
1 33J W

J W
ϕ

−
 ′  ′∞    ∞   

 1 

 
Predictions of any full-scale quantity, such as the horizontal velocity component u induced by an 

explosion at the point (r, z) at time t, can be obtained from the measurement of the quantity at the homologous 
point ( , )r z′ ′ and time t′ in the small-scale test by applying the appropriate scaling relationship.  The scaling 
relationships can be obtained by expressing both the full-scale and model-scale quantities in dimensionless forms 
and equating them as was done for Equation (26).  This follows because both comply with the dimensionless 
conservation equations.  Thus, for the u velocity component we have  

 

 ( , , ) ( , , ) ( , , )T r z t T r z tu u r z t u
L L L T L L L T

∗ ∗ ∗ ∗ ′ ′ ′ ′
′= =

′ ′ ′ ′
. (36) 

 
Hence, we express the full-scale quantity u in terms of the small-scale measurement u′ as  
 

 ( , , ) ( , , ) , , ,u r z t u r z t r r z z t tτ λ λ τ
λ

′ ′ ′ ′ ′ ′ ′= = = = . (37) 

 
Similar expressions can be developed for any other quantities.  

Application to Shallow Small-Scale Explosions in the Field 

 Small-scale field experiments conducted, for example, in ponds, lakes, and filled quarries are problematic 
when approached using traditional bubble scaling methods.  Table II shows that Hopkinson scaling, or the use of 
cube root length and time scale factors, does not apply to bubble phenomena unless the gravity scale factor is 
raised, which cannot be accomplished in the field.  High density scaling could be used in the field if a suitable 
inviscid higher density fluid could be found. Low pressure scaling could be used in the field if a suitable structure 
could be built over the body of water to allow reduction of the atmospheric pressure.  The Mixed Type scaling 
could be used to ease the pressure load on the structure, but would again require the involvement of special fluids. 
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 Of the several methods considered above, the low pressure method is the closest to satisfying the 
requirements for exact scaling in the field because it involves the same fluid used in the full-scale experiment and 
is conducted under normal gravity.  In fact, all of the requirements for low pressure scaling can be met in the field 
except some of those related to the scaling of the pressures. 
 

In the field, the principal scaling difficulty is caused by our inability to control the static atmospheric 
pressure.  The hydrostatic pressure, due to the weight of the water, is reduced by the geometric scale factor and is, 
therefore, properly scaled.  Hence, the forces that distort the bubble shape are properly scaled when the water 
boundaries and bubble geometry are properly scaled.  Scaling fails in field experiments primarily because the 
normal atmospheric pressure suppresses the growth of the bubble and produces bubbles that are too small. Indeed, 
shallow field explosions that vent under full-scale conditions often fail to vent in small-scale field experiments.  
The reduced atmospheric pressure, required by low pressure scaling, allows the bubble to grow larger than it 
would grow under the normal atmospheric pressure.  Hence, under low pressure scaling the reduction of the 
atmospheric pressure is simply a way of achieving the correct bubble size.  This suggests that if the size of the 
bubble could be properly controlled, the rest of the flow would behave in a manner similar to the full-scale flow. 
 
 These considerations have led to the realization that low pressure scaling rules, with the exception of the 
pressure rule, might apply in the field if the bubble can be grown to the proper size.  The three methods available 
for growing the bubble are (1) to vary the energy released in the explosion, (2) to change the charge depth, and (3) 
some combination of both.  Varying the charge weight would change the amount of explosive gas in the bubble 
and distort the bubble collapse and the flow during later bubble cycles.  Thus, method (1) is attractive for 
modeling bubbles that vent, but would appear to be less attractive for modeling nonventing bubbles.  Changing 
the model charge depth to adjust the bubble size presents the obvious problem of changing the flow geometry.  
The consequences, however, may be insignificant when the change in depth is small relative to the overall bubble 
size.  In particular, method (2) may also be effective for scaling venting explosions in shallow water. 
 

When venting occurs, the pressure in the bubble cavity and the atmospheric pressure rapidly equalize.  
Indeed, the assumption that the bubble pressure changes to the air pressure instantaneously upon venting is 
employed in the BUB2DS and BUB3DS codes (Reference 3,  p2-4).  Thus, any additional bubble gas associated 
with method (1) above would simply be exhausted upon venting and would not appear to complicate the 
subsequent flow.   For shallow shots, the bubble usually vents before its internal pressure reaches the vapor 
pressure; hence, it is also unlikely that cavitation would be a complicating factor.  

 
The relationships between scale factors and charge weight listed in Table II cannot be expected to be 

valid for flows induced by venting bubbles.  The bubble energy, or energy available to drive the flow, can no 
longer be assumed to be proportional to the charge weight.  This is because differing venting conditions result in 
differing fractions of the explosion energy being exhausted to the atmosphere.  Instead, the relationships between 
scale factors and charge weights for venting bubbles must be found by numerical simulations of the flows.       
 
 In collaboration with Szymczak at NRL and Wardlaw at IHDNSWC, both methods (1) and (2) were 
investigated computationally with favorable results.  Using the BUB2DS incompressible code, Szymczak 
simulated the behavior of a vertical Mk 82 bomb with its nose touching the bottom in six feet of water for both 
full-scale and 1/12th-scale field conditions.8  In each case, he assumed an initial cylindrical bubble with a volume 
equal to the volume of the actual charge.  For the 1/12th-scale test, he used a 7.3 grams Comp B charge that was 
sized using the low pressure scaling conditions with the appropriate J values. The length to diameter ratio of the 
initial bubble for the model charge was taken to be 2.3.  The depth of the model charge was decreased until the 
model cavity width versus time curve matched the scaled down full-scale curve.  Scaling of the full-scale curve 
was done by multiplying the cavity width by the 1/12 length scale factor and the time by the 12/1  time scale 
factor, as required under low pressure scaling rules.  The center depth of the model charge was 2.4 inches instead 
of the 3.3 inches needed for geometric similarity.  Cavity widths were measured at cells just above the rigid 
bottom.  Figure 2 shows the configuration and indicates that the two cavity width versus time curves matched 
extremely well.     
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Figure 2.  Full-Scale Run Configuration and Cavity Width/Time Curves for Mk 82 Bomb (Blue) 
and 7.3-Gram Charge (Red) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 3.  Full-Scale Run Configuration and Cavity Width/Time Curves for Mk 84 Bomb (Blue) 
and 28-Gram Charge (Red) 
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Wardlaw9 modeled at both full-scale and 1/12th-scale the flow produced by a vertical Mk 84 bomb with 
its nose touching the bottom in six feet of water, as depicted in Figure 3.  Because in this case, approximately one 
third of the bomb extends out of the water, the events were first modeled using Wardlaw’s Gemini compressible 
hydrocode.∗  When the explosive burn was completed, Wardlaw linked the results to the BUB2DS 
incompressible code, using the velocity field produced by Gemini, and continued the calculations to completion.  
The model charge was geometrically similar to the full-scale charge (assumed to be cylindrical) in the vertical 
direction, but its diameter was reduced to achieve the desired explosive weight.  This method was chosen to keep 
the same fractions of the explosive charge above and below the water surface for all runs.  The charge weight was 
varied from that required by low pressure scaling (36 gms) until the cavity width versus time curve of the model 
matched that of the scaled down full-scale calculation.  The best match, which is shown in Figure 3, occurred for 
a charge weight of 28 grams.  That the quality of the match is somewhat below that shown in Figure 2 is thought 
to be due to the fact that the calculation was more complex.  To obtain an accurate simulation of the explosive 
burn and to get the shock wave well beyond the bubble, the Gemini run had to be rezoned three times.  The 
difficulty of controlling the rezoning times may have introduced  
differences.  There was also a discontinuity in the linkage of the codes and a non-physical pressure pulse caused 
by the incompressibility of the BUB2DS code.9   
 

The finding that the charge size needed to grow the bubble was less than that predicted by low pressure 
scaling, rather than more, deserves comment.  It is thought that this is because the diameter of the model charge 
was smaller than that of the scaled down full-scale charge.  Because the charge length was kept geometrically 
similar, a diameter smaller than the geometrically similar diameter had to be used to achieve charge weights on 
the order of those required by 1/4th root low pressure scaling.  The smaller charge diameter and the higher 
pressure at the surface resulted in a more efficient coupling of the energy of the model charge to the water.  
Because the full-scale charge diameter was larger, the explosion gases could more easily escape the cavity.  The 
complete explanation is complicated, however, because the stronger shock wave of the full-scale charge relative 
to the model charge (shock wave phenomena follow cube root scaling rules) would probably result in more 
spalling at the surface.  It is presently unclear whether this would enhance or suppress the growth of the full-scale 
cavity.   

 
Figure 4 shows selected frames from movies of the computations for the Mk 84 bomb and the 28-gram 

charge at approximately similar times.  The flows appear to be quite similar, although irregularities are evident 
that may be due to the complications mentioned by Wardlaw and listed above.  Radial and vertical components of 
the flow velocity were recorded at mid-depth stations at several distances from the origin.  These are shown in 
Figure 5.  The horizontal velocity components appear be a somewhat better match than the vertical components.  
Nevertheless, the overall agreement between the model and full-scale flows is again quite good.  Moreover, the 
agreement between the velocity components appears to be best at early times. 

                                                      
∗ Compressible flow equations follow Hopkinson (high gravity) scaling.  No attempt was made here to scale the 
compressible flow.  Rather, the hydrocode was simply being used to establish initial conditions for the incompressible flow.  
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Figure 4.  Mk 84 Bomb (Left) and 28-Gram Charge (Right) Development Sequences at 
Approximately Similar Times 
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Figure 5.  Radial and Vertical Components of Flow Velocity  for Mk 84 Bomb 
(Blue) and 28-Gram Charge (Red) 

 
The calculations suggest that the entire velocity field is matched when the cavity width versus time curves 

are in agreement, particularly after venting time.  When the bubbles have vented and the entire free surface, 
including the cavity wall, is at atmospheric pressure, the velocity field alone determines the future history of the 
flow.  The fact that the model is at atmospheric pressure, rather than the reduced level prescribed by the low 
pressure scaling rules, does not affect the flow after venting because the conservation equations depend on the 
pressure through the gradient only.  Hence, it appears that the agreement of the velocity fields following venting 
guarantees the similarity of the flows.     
 

0 0.5 1 1.5 2 2.5 3200

100

0

100

200

TIME (SEC)

R
A

D
IA

L 
VE

LO
C

IT
Y 

(C
M

/S
EC

)

0 0.5 1 1.5 2 2.5 3200

100

0

100

200

TIME (SEC)

R
A

D
IA

L 
VE

LO
C

IT
Y 

(C
M

/S
EC

)

0 1 2 3 4 5100

50

0

50

100

TIME (SEC)

VE
R

TI
C

A
L 

VE
LO

C
IT

Y 
 (C

M
/S

EC
)

0 0.5 1 1.5 2 2.5 3200

100

0

100

200

TIME (SEC)

R
A

D
IA

L 
VE

LO
C

IT
Y 

(C
M

/S
EC

)

0 0.5 1 1.5 2 2.5 3100

50

0

50

100

TIME (SEC)

VE
R

TI
C

A
L 

VE
LO

C
IT

Y 
 (C

M
/S

EC
)

0 0.5 1 1.5 2 2.5 3100

50

0

50

100

TIME (SEC)

VE
R

TI
C

A
L 

VE
LO

C
IT

Y 
 (C

M
/S

EC
)

0 0.5 1 1.5 2 2.5 3100

50

0

50

100

TIME (SEC)

VE
R

TI
C

A
L 

VE
LO

C
IT

Y 
 (C

M
/S

EC
)

0 0.5 1 1.5 2 2.5 3200

100

0

100

200

TIME (SEC)

R
A

D
IA

L 
VE

LO
C

IT
Y 

(C
M

/S
EC

)



IHCR 06-94 
 
 
 

 
15 

 Figures 6 and 7 show that it is not always possible to match the cavity width history by increasing the 
model charge weight at the geometrically scaled full-scale charge depth.  In this numerical experiment performed 
by Wardlaw using the BUB2DS code (initialized by Gemini), conditions were similar to that shown in Figure 3 
except that the water depth was increased to 12 feet.10  The Mk 84 bomb was then fully submerged.  Cavity width 
plots for 48 and 42 grams of Comp B, shown in Figure 6, suggested that a smaller charge weight was required to 
match the scaled down full-scale curve.  The charge weight required by the low pressure scaling law was 36 
grams.  The run at 39 grams, however, showed both (1) that a smaller size charge was needed to be on the scaled 
full-scale curve and (2) that the bubbles of such smaller charges would not vent.  Figure 7 shows the 39-gm 
bubble developing downward and upward jets at a scaled time after the full-scale bubble had vented.  Apparently, 
the high atmospheric pressure in the model test (relative to that of the low pressure scaling rule) prevented the 
bubble from opening.     

Figure 6.  Cavity Widths Comparison - All Charges at Depth Geometrically 
Similar to Full-Scale Depth  

 

Figure 7.  Frames Showing 1/12-Scale Bubble Developing Upward and  
Downward Jets After Full-Scale Bubble Has Vented 
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Figure 8 shows that it was possible to match the cavity width versus time curve for the Mk 84 bomb in 12 

feet of water by reducing the depth of the model charge.10  The charge depth   was changed from 7 inches to 4.2 
inches to obtain a charge depth to maximum bubble radius ratio of 0.2 for the 36-gram charge, which was the 
value of the ratio in Szymczak’s simulation of the Mk 82 bomb in 6 feet of water.  A tested empirical rule is that 
bubbles shallower than a quarter of a maximum bubble radius vent under normal atmospheric pressure; hence, 
this depth was chosen to ensure venting.  The size of the maximum bubble radius was obtained from the empirical 
bubble equation.  The 39-gram charge at depth of 7 inches had a ratio of about one third, and, as seen above, did 
not vent.   
 

From Figure 8 we see that the cavity width versus time curve of the 32-gram charge was in reasonably good 
agreement with the scaled full-scale curve.  The 36-gram curve is also shown.  Figure 9 shows the radial and 
vertical velocity components at selected horizontal stations for all three runs.  The radial components are, perhaps, 
in better overall agreement than the vertical components.  Fine-scale differences between all three computations 
are apparent in the movies of the flows, and these may be responsible for some of the differences shown in Figure 
9.  On the whole, the agreement between the model and full-scale velocity components is quite acceptable. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 8.  Cavity Widths Comparison - Model Charges at Depth of 4.2 Inches to Ensure Venting  
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Figure 9.  Radial and Vertical Components of Flow Velocity for Mk 84 Bomb (Blue) in 12-ft of 
Water and 32-gm (Black) and 36-gm (Red) Comp B Charges at 4.2 in. 
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Scaling of Obstacle Displacements 
 
 We now examine whether obstacles placed in the small scale flow field behave in manners that are 
similar to their behavior under full-scale conditions.  We examine first the case of an obstacle that translates 
without rotation.  Computer generated animations of obstacle motions made by Wardlaw (using a rigid body 
model of the motions of a tetrahedron coupled to Szymczak’s BUB2DS incompressible hydrocode that has been 
started using, as in the case of the Mk 84 bomb, the GEMINI hydrocode) showed that, in some cases, obstacles 
did not rotate appreciably while being transported by the flow.11  Generally, however, obstacles do rotate during 
translation.  We will comment at the conclusion of this section on the effects rotations may have on the motion of 
the obstacle and the issue of scaling. 

 
If the translating obstacle is lifted and translated by the flow, a first approximation of the equations 

governing the obstacle’s motion can be assumed to be 
 

 21( ) ( )
2rA r rm m r C a u rρ+ = −&& &  (38) 

in the horizontal direction and  
 

 2
0

1( ) ( )
2zA z zm m z C a w z mg gρ ′+ = − −&& &  (39) 

 
in the vertical direction.  Here, m is the mass of the obstacle, Arm and Azm are added masses for flows in 
the r and z directions, respectively, ra and za are the areas of the obstacle presented to the horizontal and 
vertical components of the flow, and rC and zC  are the drag coefficients.  Equations (38) and (39) are 
based, in part, on an analysis performed by Goeller and Ruben,12 who studied the case of an obstacle 
that is driven horizontally by the water flow and is resisted by frictional contact with the bottom.  They 
concluded that a “constant drag coefficient appears reasonable; that is, there is little dependence on 
Reynolds Number.”  Hence, we shall assume that rC and zC are unvarying constants.   
 
 The need for added masses in the governing equations is a currently unresolved issue.  They are not 
employed by Wardlaw in his hydrocode-coupled rigid body code because the obstacle mass is being driven by the 
flow rather than driving it.11  We shall carry them along, nevertheless, in the event that they prove to be necessary 
during some phases of the motion.    
 
 The obstacle masses and the area presented to the horizontal flow component will vary if the length scale 
L of the obstacle is changed.  We can assume that the variation of the mass of the obstacle with L can be 
represented as  
 

 3 .obs mm L fρ=  (40) 
 

Here obsρ is the density of obstacle material and 3
mf V L= , is a dimensionless form factor that is independent 

of scale, where V is the obstacle volume.  Similarly, the variation with L of the area presented to the horizontal 
flow can be written as  
 

 2
rr aa L f= , (41) 
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where

raf is a dimensionless horizontal area form factor.  In like manner, we write the presented area in 
the vertical direction as  
 
 2

zz aa L f= . (42) 
 
 The added masses of the obstacle are somewhat more involved.  Assuming potential flow, Pozrikidis has 
shown13 that the kinetic energy K of the fluid for a general motion of a rigid body of volume V can be written as   
 

 1
2 ij i jK V A W Wρ= , (43) 

 
where ( , , , , , )x y zW u v w ω ω ω ′=  is a vector of translational and rotational velocity components of the rigid body 

and ijA is the symmetric six-by-six grand added mass matrix.  Pozrikidis states that the “value of A depends 

exclusively upon the instantaneous body shape and orientation and presence of other objects, but is independent 
of the body’s linear or angular velocity or acceleration.”  The important idea for us is that A depends on body 
shape, but not its scale.  Since we are assuming translational motion in two directions only, A has only three 
nonzero terms corresponding to the r and z directions and a cross term.  Because the volume dimensions are 
proportional to their associated scale factors, Equation (43) shows that it is possible to represent the virtual masses 
by the forms 

 3
r ArA mm L fρ=  (44) 

and 3
z AzA mm L fρ= , (45) 

 
where 

Armf and 
Azmf are dimensionless form factors that involve elements of the grand added mass matrix. 

 
If we insert Equations (40), (41), (42), (44), and (45) into Equations (38) and (39), along with the 

expressions 2
Lr r

T
∗=&& && , 2

Lz z
T

∗=&& && , 
Lr r
T

∗=& & , 
Lz z
T

∗=& && and, as before,  

Lu u
T

∗=  and 
Lw w
T

∗= , in which the starred quantities are dimensionless, we get  

 

 3 2 2
2

1( ) ( )
2A rrobs m m r a

L L Lf f L r C L f u r
T TT

ρ ρ ρ∗ ∗ ∗+ = −&& &  (46) 

 
 

 3 2 2 3
02

1( ) ( )
2A zzobs m m z a obs m

L L Lf f L z C L f w z L f g g
T TT

ρ ρ ρ ρ∗ ∗ ∗ ′+ = − −&& &  (47) 

 

If we insert 02
L F g g

T
′=  from Equations (17) and rearrange, we obtain  
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1

* * * 22 ( )
( )

r

Ar

r a

obs m m

C f
r u r

f f

ρ

ρ ρ
= −

+
&& &  (48) 

 

and 
* * 21

* 2 ( )

( )
z

Az

z a obs m

obs m m

C F f w z f
z

F f f

ρ ρ

ρ ρ

− −
=

+

&
&& . (49) 

 
Equations (48) and (49) show that the displacement equations are invariant under Froude scaling, i.e., when the 
Froude number F is the same for both model and full-scale tests. 
 
 Obstacle rotations will add one to three additional equations of motion, depending upon the initial 
obstacle symmetries, or lack of symmetries, relative to the directions of water flow.  Lack of symmetry may also 
create transverse translational motion and a three dimensional trajectory.  It seems reasonable to expect that the 
equations of rotation and translation would be largely uncoupled, at least to a first approximation.   Without going 
into a detailed analysis, the author suspects that the primary effect of obstacle rotations would be to cause the 
form factors appearing in Equations (48) and (49) to vary with time.  Since these are scale independent, the 
motion of the rotating and translating obstacle will likely also be invariant under scale changes.  This conjecture 
could best be tested with the use of Wardlaw’s hydrocode-coupled rigid body code, which allows six degrees of 
freedom. 

Experimental Tests of the Shallow Explosion Scaling Theory 

In the summer of 2005, field tests were conducted by SRI International, under the direction of P.Gefken, 
using 1/12-scale tetrahedron obstacles and a water depth of six inches.14  Comp B charges weighing 7.3 grams and 
28 grams were prepared that modeled the Mk 82 and Mk 84 bombs, respectively, and  were configured in a 
manner consistent with the theory and calculations discussed above.  Six replicated shots were conducted for both 
the Mk 82 scaled conditions and the Mk 84 scaled conditions.  For both cases, all tetrahedrons in three of the 
shots were placed in a “toward” orientation and in an “away” orientation in the other three shots.  A toward 
orientation means that the ground triangle (the side of the tetrahedron in contact with the ground) pointed 
symmetrically in the direction of the charge.  The ground triangle pointed away from the charge for the away 
oriented tetrahedrons.  The displacements of 54 tetrahedron obstacles were measured for each case.   
 

Figure 10 shows the radial displacements of the obstacles in the 7.3-gram tests as a function of their initial 
radial standoffs (measured to the point on the ground below the top vertex).  Diamond symbols denote the toward 
orientations and square symbols denote the away orientations.  Different colors are used to identify different 
shots.  The black solid line is the mean obstacle displacement from a regression fit to the scaled down full-scale 
Mk 82 test data, which are displayed here as small red plus symbols.  The two dashed lines represent 2σ± curves 
for the full-scale displacements.  In the analysis of the full-scale data, the standard deviations were assumed to be 
proportional to the mean.  This assumption is not fully realistic, but it is in reasonable agreement with the full-
scale data.  According to theory, about 98 percent of the displacement points should fall between the dashed lines.  
The full-scale analysis was based on the displacements of a total of 16 tetrahedron obstacles in four Mk 82 bomb 
tests.   
 

Figure 10 suggests that the SRI radial displacement data agree reasonably well with the scaled down full-
scale displacements.  At 7 inches, the SRI data lie somewhat above the full-scale mean, while at 12 and 15 inches 
they appear to fall below the mean curve.  The continuing upward trend shown by the SRI displacements at close-
in initial standoffs is probably realistic, since the downturn of the full-scale mean is based upon only two data 
points.  In theory, one would expect a downturn at some point as the initial standoff is reduced to zero.  However, 
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in reality, the obstacle may break up before this is observed.  The small-scale displacements appear to fall off 
more sharply with initial standoff than the full-scale data.  The scatter of the SRI data looks much like the full-
scale scatter, although there may be a local increase around 15 inches.  There is no detectable difference between 
the displacements of obstacles with toward and away orientations. 
 

Clearly the assumption that the standard deviation is proportional to the mean is incorrect since there is 
appreciable spread in the data after the mean has reached zero.  A more correct assumption may be that the 
standard deviation is proportional to the mean of the total distance traveled.  Calculations made by Wardlaw with 
a rigid body code for obstacle motions coupled to his Gemini hydrocode show that the obstacles move back and 
forth with the flow to a considerable extent before coming to rest.11  This apparently produces the scatter at the 
larger distances.  Although direct observation of the total travel distance would probably be difficult for each 
obstacle tested, suitable information could probably be obtained from Wardlaw’s codes to revise the statistical 
analysis.     

 
The angular displacements for the 7.3-gram shots, shown in Figure 11, suggest increased scatter for 

obstacles placed at the 18- and 21-inch standoffs.  This could also reflect a dependence on the total travel 
distance.  There does not appear to be an effect due to obstacle orientations, but more tests would be required to 
detect such differences. 
 

A possibly significant difference between the full-scale and 1/12th-scale conditions is that the masses of 
the tetrahedrons in SRI’s model tests appear to have been 10 to 20 percent low.  The weight calculated for an 
idealized full-scale tetrahedron measuring 56 inches from  



IHCR 06-94 
 
 
 

 
22 

Figure 10.  Comparison of 7.3-Gram Test Radial Displacements with Scaled Full- Scale Mean 
(Solid) and ±2σ Standard Deviation (Dashed) Curves.  Colors Denote Different Shots.  Diamonds 

and Squares Denote Toward and Away Orientations. 

Figure 11.  Angular Displacements in 7.3-Gram Tests.  Colors Denote Different Shots.  
Diamonds and Squares Denote Toward and Away Orientations.
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vertex to vertex, with a 5/8-inch thickness, leg widths of 4 inches in both directions, and using a steel density of 
0.284 pounds per cubic inch, is 418 pounds.  The density used corresponds to a linear weight of 15.7 lbs/ft for the 
angle steel.  This result is somewhat lower than that estimated by Goeller and Rubin in Reference 13.  At 1/12th-
scale, the calculated tetrahedron mass would be 110 grams.  The masses of the tetrahedrons used in the SRI tests 
were 93 1±  grams.14  It is unclear how the lighter mass might have affected the results of the tests.  Previous 
experiments conducted by SRI using 50-gram Comp B charges in water six feet deep and involving like obstacles 
of different masses showed that the heavier ones tended to become airborne more often than lighter obstacles.15  It 
was thought by some participants in the effort that the additional inertia made it easier for the heavier obstacles to 
exit the water.  It is reasonable to suspect that the lower inertias of the tetrahedrons may have resulted in 
premature stopping and perhaps a steepening of the slope of the mean curve. 
 
 Just prior to publication of this report it was learned16 that the Mk 82 bombs used in the four full-scale tests 
had explosive weights that were about 9 percent below the standard weight of 192 lbs upon which the scaled tests 
were designed.  It was also learned that the explosive used in the full-scale tests was H-6 instead of Tritonal, 
which had been assumed.  Because the J value for H-6 is slightly below that of Tritonal (about 2 percent less), the 
full-scale displacements in Figure 10 represent a bomb with the same explosive and a weight that is, perhaps, 10 
percent below the standard weight.  This difference may account for the close-in disagreement between the model 
and full-scale displacements.  It is reasonable to expect that displacement curve for the standard weight would be 
proportionately raised and the difference between the slopes of the full-scale and model-scale data lessened.  The 
implications of this charge weight discrepancy will be further investigated in 2006. 
 

The results for the 28-gram tests conducted by SRI are shown in Figures 12 and 13.  No full-scale tests of 
the Mk 84 bomb in water six feet deep with obstacles have been conducted; hence, no full-scale comparisons can 
be made.  The 28-gram test results again show, in both Figures 12 and 13, an increase in the scatter for the 
obstacles at intermediate distances from the charge.  Qualitatively, the results are much like those of the 7.3-gram 
shots.  An interesting detail seen in Figure 12, although not in Figure 10, is that the displacements of obstacles 
with toward orientations (diamonds) appear to be slightly higher than those with away orientations (squares) at 
close in positions.  This might be expected from a theoretical viewpoint because the toward orientation, with two 
legs tilted toward the explosion, should generate more lift in the outflow direction and less in the inflow direction, 
thus favoring a greater net displacement.     
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Figure 12.  Radial Displacements in 28-Gram Tests.  Colors Denote Different Shots.  Diamonds 
and Squares Denote Toward and Away Orientations. 

 

Figure 13. Angular Displacements in 28-Gram Tests.  Colors Denote Different Shots.  Diamonds 
and Squares Denote Toward and Away Orientations. 
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Conclusions and Recommendations 
 
1. It appears that obstacle motions produced by full-scale explosions can be accurately reproduced in small-

scale experiments when venting of the explosion bubble occurs.  Model charge conditions that bring 
about a matching of the model-scale and scaled down full-scale cavity width versus time curves appear to 
successfully reproduce all hydrodynamic details of the water flow as well as the displacements of scaled 
obstacles placed in the flow.  This matching process can be achieved by using hydrocodes that model the 
explosion flow effects.  The appropriate time scale factor is the square root of the length scale factor, 
which can be set arbitrarily for the model experiment.  Conditions for this computer-guided Froude 
scaling are close to those used for low pressure scaling, but they do not require reduction of the 
atmospheric pressure.  Hence, they are appropriate for tests conducted in the field. 

 
2. While the discussion in this report has been focused on scaling the flow effects of a single explosive 

charge, it would appear that the method can be extended to the multiple-charge scenario.  It is likely that 
sizing the various charges could be done on a one-at-a-time basis using the method summarized above, 
but this suggestion should be the subject of future research. 

 
3. It is recommended that the relationship between obstacle displacement and obstacle mass be investigated 

computationally using Wardlaw’s Gemini-coupled rigid body obstacle displacement code. 
 
4. It is recommended that additional testing be performed by SRI International using obstacles with masses 

that closely match those of the scaled down full-scale obstacles for the purpose of validating the 
computer-guided scaling approach discussed in the report.  It is recommended that the experimental study 
also explore other factors that might affect the shape of the mean displacement versus initial standoff 
curve, such as sand characteristics. 

 
5. It is recommended that the scaling bubbles that vent during the second cycle of expansion be explored 

computationally.   
 
6. It is recommended that theoretical studies be funded to rigorously establish the concept of computer-

guided scaling of shallow explosions. 
 
7. It is recommended that the comparison between the full-scale and model tests be reviewed and 

consideration given to additional small-scale tests designed using the actual full-scale test charge weights.   
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